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Insects represent the most diverse and functionally important group of flying

migratory animals around the globe, yet their small size makes tracking even

large migratory species challenging. We attached miniaturized radio trans-

mitters (less than 300 mg) to monarch butterflies (Danaus plexippus) and

common green darner dragonflies (Anax junius) and tracked their autumn

migratory movements through southern Ontario, Canada and into the

United States using an automated array of over 100 telemetry towers. The

farthest estimated distance a monarch travelled in a single day was 143 km

at a wind-assisted groundspeed of 31 km h21 (8.7 m s21) and the farthest esti-

mated distance a green darner travelled in a single day was 122 km with a

wind-assisted groundspeed of up to 77 km h21 (21.5 m s21). For both species,

increased temperature and wind assistance positively influenced the pace

of migration, but there was no effect of precipitation. While limitations to

tracking such small animals remain, our approach and results represent a

fundamental advance in understanding the natural history of insect migration

and environmental factors that govern their movements.
1. Introduction
Billions of insects around the world undertake annual migrations. The occurrence

of insect migration has been known for centuries and includes such well-known

examples as desert locusts (Schistocerca gregaria) in Africa [1], painted lady butter-

flies (Vanessa cardui) in Europe [2] and monarch butterflies (Danaus plexippus) in

North America [3]. While these migrations can have an enormous impact on the

functioning of ecosystems [4,5], little is known about the proximate environ-

mental factors that guide individual movements. Some aspects of insect

migration may be similar to avian migration [6], but environmental conditions,

such as wind and temperature, have a greater effect on the pace of insect

migration [7]. The major challenge has been an inability to track individuals

during flight, which means we have a limited understanding of how far or

how fast insects can travel over successive days during migration.

Along with moths [8,9], dragonflies and butterflies are among the most

charismatic migratory insects. Although their annual migrations are typically

multi-generational [2,3,10], individuals of many species travel thousands of

kilometres during a single migration [2,11]. Most butterflies and dragonflies

migrate during the day and near the surface of the Earth where their self-

propelled flight speed generally exceeds wind speed [12]. This allows these

relatively large insects to, at least partially, correct for wind drift [13,14] and

have greater control over their intended direction. Some species, such as

painted lady and monarch butterflies, will also soar higher in the atmosphere
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[2,15,16] to take advantage of strong winds blowing in

favourable directions [5,7,17]. In addition to wind, the temp-

erature should have an effect on the pace of migration

because a minimum ambient temperature is required for

insect flight [18]. Precipitation may be disruptive to

migration, but its effects are less certain [18]. Evaluating

how these environmental factors influence the pace of indi-

vidual migration is important for understanding the diverse

migration strategies of insects.

In this study, we used an automated wildlife tracking

system (Motus [19]) to radio-track individual monarch butter-

flies and common green darner dragonflies (Anax junius) as

they migrated through southern Ontario, Canada in the

autumn. The last summer generation of eastern North

American monarch butterflies travels south to overwinter in

central Mexico and then migrates north the following

spring to produce the first breeding generation [3,20].

Common green darners also undertake an annual multi-

generational migration from eastern North America to the

southern United States, Mexico and the Caribbean and back

[10,21]. For both species, we document individual trajectories

at the beginning of autumn migration, describe the speed and

daily distance of travel, and test the effects of temperature,

wind and precipitation on the speed of migration.
2. Material and methods
(a) Field methods
Fieldwork occurred during September 2015 and 2016 in the

Bruce Peninsula (ON, Canada; 458130 N, 818370 W), an area

dominated by mixed-wood forests and exposed limestone

cliffs. Insects were captured using butterfly nets at three main

sites (meadow, residential gardens and alvar). Captured insects

were sexed and weighed, and only insects weighing greater

than 0.45 g were fitted with an NTQB-1 radio transmitter

(Lotek Wireless Inc., Newmarket, ON, Canada). We used two

different weights of transmitters; plastic coating (0.27 g) and

clear finish (0.23 g). For both species, transmitters were adhered

directly below the leg joints, on the ventral abdomen for

monarchs, and the ventral thorax for green darners, using Instant

Krazy Glue Advanced Gel (Elmers, OH, USA).

In total, 38 green darners (2015: n ¼ 28; 2016: n ¼ 10) were

tagged, comprising 12 males and 26 females. For monarchs, 43

individuals were tagged (2015: n ¼ 19; 2016: n ¼ 24), comprising

27 males and 16 females. All tagged green darners were released

within 1 h of capture. Most tagged monarchs could not sustain

flight after release and were kept for one to two nights, fed

honey–water solution and released in the morning. Movements

of tagged insects were detected by the Motus Wildlife Tracking

System (https://motus.org), an automated radio-telemetry net-

work with over 100 towers [19]. In 2015, tagged insects were

released at the base of one of two Motus towers on the Bruce

Peninsula. However, in 2016, the nearest tower was relocated

north of the capture sites. Tagged insects were released at the

central capture location, approximately 42 km from the nearest

southern tower, excluding one individual released at the new

northern tower location.

(b) Data analysis
R v. 3.4.4 [22] was used for all statistical analyses. Motus move-

ment data [19] were processed and filtered using the Motus

package (https://motus.org/MotusRBook/). We filtered out

false detections from series that had fewer than four consecu-

tive bursts, were outside of the probable range of movement
or came from towers that appeared to be having random

radio noise interference. We confirmed that the remaining

detection series had consecutive bursts at the tags’ designated

burst rate [23].

For subsequent analyses, we assumed that both species only

migrated between certain hours during the day [6,24,25].

Activity hours were defined as 10 : 00–19 : 00 EST for monarchs

and 07 : 00–19 : 00 EST for green darners (electronic supplemen-

tary material). Mean groundspeed between detections was

estimated by dividing the straight line (loxodrome) distance

between detections by the number of activity hours between

detections. Airspeed was calculated by subtracting tailwinds

from groundspeed. Crosswinds were not factored into the calcu-

lation. Circular statistics and a Rayleigh’s test of uniformity were

used to evaluate the mean direction of movements between

detections (circular package [26]).

To understand how environmental variables influenced the

estimated mean groundspeed of individuals between detections,

we ran a general linear mixed model (lmerTest package [27]),

with mean groundspeed (km h21) as the response variable.

Fixed effects included in the model were species, body mass

(g), departure date (Julian), mean temperature (8C), total precipi-

tation (mm), tailwind (m s21), crosswind (m s21) and individual

ID (random effect). Results are reported as parameter

estimates+ s.e. North American Regional Reanalysis (NARR)

weather data were provided by the NOAA/OAR/ESRL PSD

(Boulder, Colorado, USA; https://www.esrl.noaa.gov/psd/) at

a grid resolution of 0.38. See electronic supplementary material

for analysis of weather data.
3. Results
In total, 49% (21/43) of monarchs and 95% (36/38) of green

darners were detected by the Motus tower closest to the

release sites. Twenty-nine per cent (6/21) of monarchs (all

males) and 17% (6/36) of green darners (all females) were

detected away from the release sites, by up to four towers

(figure 1). Most detections were in southern Ontario, but

one monarch was detected in southern Indiana (figure 1a).

The mean direction of movement was almost directly south

(1728; Rayleigh test, r ¼ 0.84, p , 0.001, n ¼ 21 movements

from 12 individuals; figure 2a).

The average groundspeed between detections was 12

(+10 s.d.) km h21 (3.3 m s21) for monarchs and 16 (+23)

km h21 (4.5 m s21) for green darners. The average daily dis-

tance travelled was 61 (+42) km for monarchs and 43

(+34) km for green darners (figure 2). The fastest green

darner travelled at a groundspeed of 77 km h21 (21.5 m s21;

figure 2) with 20 km h21 (5.5 m s21) tailwind assistance,

resulting in an estimated airspeed of 58 km h21

(16.0 m s21). The fastest monarch travelled at a groundspeed

of 31 km h21 (8.7 m s21) with 16 km h21 (4.6 m s21) tailwind

assistance, resulting in an estimated airspeed of 15 km h21

(4.1 m s21). These fastest individuals also travelled the farth-

est within a single day, with the green darner travelling at

least 122 km and the monarch at least 143 km between detec-

tions (figure 2). Groundspeeds and distances travelled per

day would have been underestimated for individuals with

multiple days in between detections because we could not

determine if and for how long individuals rested during

days when they were not detected. Averages would also be

underestimated as a result.

The mean daytime temperature between detections ranged

from 17.8 to 22.98C, total precipitation ranged from 0 to 7.9 mm,
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Figure 1. Sequential detections (black points) of radio-tagged monarch butterflies (orange lines) and common green darners (green lines) between Motus Wildlife
Tracking System towers in (a) eastern North America and (b) zoomed in to southern Ontario, Canada. Grey points indicate active Motus towers in 2015 and asterisks
(*) indicate the deployment sites. Lines connect individuals between Motus tower detections but do not indicate the actual path of travel between points. Map
projection is Mercator.
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Figure 2. (a) Circular plot displaying the direction of movements between detections. Arrow shows the circular mean direction. (b) Histograms displaying the
estimated mean distance of travel each day between detections and (c) the estimated mean groundspeed of travel between detections for radio-tagged monarchs
(i) and common green darners (ii). Dark bars indicate distances and speeds calculated from detections between two towers within the same day, whereas lighter
bars indicate calculations from detections between multiple (2 – 3 or 4þ) days.
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and wind speed ranged from 3.6 to 28.9 km h21. Groundspeed,

as estimated from successive detections of the same individual,

was positively influenced by the mean daytime temperature

(b ¼ 4.14+1.45, d.f.¼ 12.80, t ¼ 2.86, p ¼ 0.01), tailwind

assistance (b ¼ 7.49+0.95, d.f.¼ 11.98, t ¼ 7.90, p , 0.001)

and crosswind from the west (b ¼ 23.16+0.70, d.f. ¼ 7.86,

t ¼ 24.53, p , 0.01). There was no significant effect of total

precipitation on groundspeed (b ¼ 0.59+1.33, d.f.¼ 8.63, t ¼
0.45, p ¼ 0.67). Complete results are reported in electronic

supplementary material, table S1.

4. Discussion
Direct tracking of both monarch butterflies and common

green darners revealed the capacity of these insects to travel

long distances in a short period of time and how their

migration was influenced by environmental conditions en

route. The maximum daily distance a monarch butterfly
covered (143 km) was close to a previous estimate for the

species based on observed flight speeds (130 km day21

[20]). We estimate the fastest monarch flew at an airspeed

of 15 km h21 (4.1 m s21), close to airspeeds observed for

‘cruising’ monarchs (approx. 18 km h21 or 4.9 m s21 [28])

and matching the top speeds that have been measured for

other Danaus species (15 km h21 or 4.1 m s21 [29]). If mon-

archs were to exploit stronger winds higher in the

atmosphere [15,16], they theoretically could fly even faster

[28], but this may not have been possible with the additional

weight of the tags.

Consistent with previous observations that green darners

move every few days [6], the number of days between some

detections in this study suggests these green darners (and

also monarchs) took rest days during migration. The farthest

green darner travelled at least 122 km in a single day, within

the range of a previous estimate for the species based on

observed flight speeds (200 km day21; [6,24]). However, the



royalsocietypublishing.org/journal/rsbl
Biol.Lett.15:20190327

4
average daily distance estimated in this study (43 km day21)

was much farther than the average daily distance travelled

by green darners in the only other direct tracking study to

date (12 km day21; [6]). Populations that emerge farther

north, such as in this study, may migrate faster than mid-

latitude populations because northern populations arrive at

their over-wintering grounds first (by end of October; [10]).

This may also explain why two green darners appeared to

fly at very fast airspeeds; one at an airspeed of 32 km h21

(8.9 m s21), which is slightly faster than has been observed

for another species of dragonfly (Pantala hymenaea at

26 km h21 or 7.2 m s21; [14]), and another at up to

58 km h21 (16.0 m s21). We likely underestimated the wind

speed (overestimating airspeed) for the latter individual

(e.g. if it flew higher in the atmosphere [11,30]) as this is

much faster than has been observed in low altitude flight.

Our results show that groundspeed was influenced by

both temperature and wind. Both green darners and mon-

archs moved faster at higher temperatures, likely because

they require the ambient temperature to be above a certain

threshold for flight [10]. At higher temperatures than were

recorded in this study (greater than 238C), green darners

have been recorded flying slower with increasing tempera-

ture and are likely attempting to regulate their body

temperature when it gets too hot [24]. Both species also had

faster groundspeeds with increasing tailwind assistance.

This suggests that they may not be adjusting their airspeed

to wind conditions (i.e. they were not minimizing the ener-

getic cost of migration [30]). If populations at the northern

edge of their range have to travel farther to reach their

over-wintering grounds, they may be more limited by time

and unable to completely minimize the energetic cost of

migration in favour of faster travel. Surprisingly, total precipi-

tation did not appear to have an effect on flight speed. This

may be because we did not track individuals during any
heavy rain events and they had no difficulty with light

rain, or because they were able to make up for lost time

after the rain ceased.

Despite the advances made in understanding individual

insect migration, several limitations remain. In this study,

the tags weighed up to 49% of individual body weight and

may have had a significant impact on the animals’ ability

to move (slowing them down), particularly for monarchs.

Green darners appeared to handle the tags much better (see

also [6]), but testing how transmitters affect migration

should be a focus of future research (e.g. [31]). Those that

did make significant movements could only be tracked at

the start of migration because the batteries lasted for less

than one month. Towers also have limited detection ranges

and several were not functional during this study. Because

of these limitations, we also had to group monarchs and

green darners for statistical analysis, potentially losing our

ability to differentiate species-specific effects. As various

tracking devices become smaller, we will continue to advance

our understanding of insect migration.
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